The Chi – Squared Test $(X^2 - test)$

By
Dr. Asaad Al-Yassen
Assist. Professor of dermato-epidemiology
& occupational health
Department of Community Medicine
University of Basrah

The distribution of a categorical variable in a sample often needs to be compared with the distribution of a categorical variable in another sample.

- It is a test for qualitative data.
- Based on counts or frequencies.
- Chi squared test measures the difference between **actual frequencies** and **expected frequencies** (as expected under the null hypothesis)

$$X^2 = sum \ of \qquad \begin{array}{c} & (Observed \ frequency - Expected \ frequency)^2 \\ & Expected \ frequency \end{array}$$

$$\mathbf{X}^2 = \mathbf{\Sigma} \cdot \mathbf{E}^2$$

Procedure:

1.State the null hypothesis (Ho):

There is no relation ship between the two variables.

- 2. Arrange the data in a table.
- **3.**Calculate the expected frequencies:

4.Calculate X² value:

$$\mathbf{X}^2 - \mathbf{test} = \mathbf{\Sigma} - \mathbf{E}$$

5.Determine degree of freedom:

$$df = (Rows - 1)(Columns - 1)$$

6.Compare the calculated X^2 value with the tabulated critical value.

7.Conclusion:

At 95% level

If the calculated X^2 value < tabulated critical value

If the calculated X^2 value > tabulated critical value

Example: The following data were obtained from a study on the association between smoking and lung cancer in men:

Smoking status	No. of persons who developed lung cancer	No. of persons who did not develop lung	Total
		cancer	
Smokers	30	120	150
Non – smokers	10	100	110
Total	40	220	260

Perform a complete X^2 - test on the data in the table above to show whether an association does exist between smoking and lung cancer.

- 1. Null hypothesis: There is no relation ship or association between smoking and lung cancer, and if there is association is due to chance or sampling error.
- 2. Arrange the table.
- 3. Calculate the expected frequency for each cell.

Row total X Column total

Expected frequency (E)=-----

Grand total

$$E(10) = \frac{110 \text{ X } 40}{260}$$

$$E(100) = ---- = 93.08$$

$$260$$

= 2.08 + 0.37 + 2.83 + 0.51

4. Calculate X² value:

$$\mathbf{X}^{2} - \mathbf{test} = \mathbf{\Sigma} - \mathbf{E}$$

$$= \frac{(30 - 23.08)^{2}}{23.08} + \frac{(120 - 126.92)^{2}}{126.92} + \frac{(10 - 16.92)^{2}}{16.92}$$

$$= \frac{(100 - 93.08)^{2}}{93.08}$$

$$= 5.79$$

5. Calculate degree of freedom:

$$df = (Rows - 1) (Columns - 1)$$

= $(2-1)(2-1)$
= 1

6. Tabulated critical X² value:

Df	0.05	0.01
1	3.84	6.63

At 95% level

$$5.79 > 3.84$$

P < 0.05

So **reject** the null hypothesis There is **significant relationship** between smoking and development of lung cancer.

At 99% level

$$5.79 < 6.63$$
 P > 0.01

So **accept** the null hypothesis **No highly significant relationship** between smoking and development of lung cancer.

X^2 – test (facts and limitation)

- It shows whether a relationship exists between two variables of interest.
- It does not show the nature of the relationship.
- The expected frequency in each cell should not be less than 5.
- The calculation of X^2 must always be based on absolute numbers not on percentage or proportions.
- If all the observed cell frequencies coincide with the expected frequencies $X^2 = 0$, the greater the differences between the observed and the expected frequencies the larger the value of X^2 .
- X² test does not measure the strength of association between two factors.
- It does not show causality.